Capillary waves on a vertical jet

By JOSEPH B. KELLER

Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford, CA 94305

(Received 22 April 1983)

1. Introduction

Geer & Strikwerda (1983) devised a slender-jet theory for a jet falling vertically, with surface tension present. They solved the resulting problem numerically by extending a method they had developed previously (Geer & Strikwerda 1980). Their results showed that the cross-section of the jet decreased in area and oscillated in shape with distance along the jet. They compared the oscillations with Rayleigh's (1945) results for oscillations of a jet of constant circular cross-section. There was agreement qualitatively but not quantitatively.

We shall analyse the oscillations of a vertically falling jet on the basis of their theory in order to obtain a quantitative description of them which agrees with the numerical results. First we find the solution for a vertical jet with a circular cross-section. Then we determine its small-amplitude oscillations. Our analysis differs from Rayleigh's because our unperturbed jet is falling, so its velocity and radius are not constant.

2. Circular cross-section jet

For a circular jet, equations (2.3)–(2.5) of Geer & Strikwerda (1983) become, with z' = 1 + z and the prime omitted, and with w an appropriate Weber number,

$$\overline{\phi}_{rr} + r^{-1}\overline{\phi}_r = -\frac{1}{2}z^{-\frac{1}{2}} \quad (0 < r < \overline{s}(z), \quad z > 1), \tag{2.1}$$

$$\overline{\phi}_r = z^{\frac{1}{2}} \overline{s}_z \quad (r = \overline{s}(z)), \tag{2.2}$$

$$\overline{\phi}_{r}^{2} + 2z^{\frac{1}{2}}\overline{\phi}_{z} = -\frac{1}{w\bar{s}}$$
 $(r = \bar{s}(z)).$ (2.3)

The solution of these equations is

$$\bar{s}(z) = s_0 \, z^{-\frac{1}{4}},\tag{2.4}$$

$$\overline{\phi}(r,z) = -\frac{r^2}{8z^{\frac{1}{2}}} - \frac{s_0^2}{32z} - \frac{2z^{\frac{3}{4}}}{3ws_0} + \phi_0.$$
(2.5)

Here s_0 is the jet radius at z = 1 and ϕ_0 is an irrelevant constant.

3. Waves

We now write

$$\phi(r,\theta,z) = \overline{\phi}(r,z) + \delta\phi'(r,\theta,z) + O(\delta^2), \quad s(\theta,z) = \overline{s}(z) + \delta s'(\theta,z) + O(\delta^2). \tag{3.1}$$

J. B. Keller

Here δ is a measure of the wave amplitude, which also indicates the deviation of the cross-section from a circle. By using (3.11) in equation (2.3)–(2.5) of Geer & Strikwerda (1983) and equating coefficients of δ , we obtain

$$\phi'_{rr} + r^{-1}\phi'_{r} + r^{-2}\phi'_{\theta\theta} = 0 \quad (0 \le r \le \bar{s}(z)),$$
(3.2)

$$\phi'_{r} = z^{\frac{1}{2}}s'_{z} + \frac{s'}{4z^{\frac{1}{2}}} \quad (r = \bar{s}(z)), \tag{3.3}$$

$$2\bar{\phi}_{r}\phi_{r}' + 2z^{\frac{1}{2}}\phi_{z}' = \frac{s_{\theta\theta}}{w(\bar{s})^{2}} + \frac{s'}{w(\bar{s})^{2}} - \frac{\bar{s}s'}{8z^{\frac{3}{2}}} - \frac{\bar{s}s'}{8z} \quad (r = \bar{s}(z)).$$
(3.4)

A product solution of (3.2) is

$$\phi'(r,\theta,z) = U_2(z) r^n \cos n\theta.$$
(3.5)

Then we write the corresponding expression for s' as

$$s'(\theta, z) = U_1(z) \cos n\theta. \tag{3.6}$$

Substitution of (3.5) and (3.6) into (3.3) and (3.4) yields the following pair of equations for U_1 and U_2 :

$$\frac{\mathrm{d}}{\mathrm{d}z}U_1 = -\frac{1}{4z}U_1 + n(\bar{s})^{n-1}z^{-\frac{1}{2}}U_2, \qquad (3.7)$$

$$\frac{\mathrm{d}}{\mathrm{d}z} U_2 = \left[\frac{1-n^2}{2w(\bar{s})^{n+2} z^{\frac{1}{2}}} - \frac{3}{16z^{\frac{3}{2}}(\bar{s})^{n-1}}\right] U_1 + \frac{n}{4z} U_2.$$
(3.8)

To solve (3.7) and (3.8) we rewrite them as

$$\frac{\mathrm{d}}{\mathrm{d}z} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \mathcal{A}(z) \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}. \tag{3.9}$$

Wavelike solutions of (3.9) are given by the method of Keller & Keller (1962), which involves the eigenvalues of the coefficient matrix A(z). They are

$$\lambda_{\pm}(z) = \frac{n-1}{8z} \pm \frac{i}{2} \left[\frac{2(n^3-n)}{ws_0^3 z^4} - \frac{(n-1)^2 - 8n}{16z^2} \right]^{\frac{1}{2}} \sim \frac{n-1}{8z} \pm i \left(\frac{n^3-n}{2ws_0^3} \right)^{\frac{1}{2}} \frac{1}{z^{\frac{1}{4}}}.$$
 (3.10)

The solution of (3.9) contains terms proportional to the exponentials

$$\exp\int_{1}^{z} \lambda_{\pm}(z) \,\mathrm{d}z \sim z^{\frac{1}{8}(n-1)} \exp\left[\pm i \left(\frac{n^{3}-n}{2ws_{0}^{3}}\right)^{\frac{1}{2}} (z^{\frac{2}{8}}-1)\right] = \exp\left[\pm i b_{2}(z^{\frac{2}{8}}-1) w^{-\frac{1}{2}}\right] \quad (3.11)$$

where

$$b_2 = \frac{8}{7} \left[\frac{n^3 - n}{2s_0^3} \right]^{\frac{1}{2}}.$$
 (3.12)

The exponent in (3.11) is the same as the argument of the sine in equation (5.4) of Geer & Strikwerda (1983). To compare (3.12) with the numerical values of b_2 in Geer & Strikwerda, we choose n = 2, 3 and 4 for jets with elliptical, equilateral triangular and square cross-sections respectively. We choose s_0 so that the cross-sectional area πs_0^2 of the circular jet is equal to 4, the area of the orifice at z = 1 in all three cases. This yields $s_0 = 2\pi^{-\frac{1}{2}}$. With this value, (3.12) yields the results shown in table 1 under 'analytical'. The numerical values from table 3 of Geer & Strikwerda (1983) are shown for comparison.

	Analytical	Numerical
Ellipse (2 to 1)	1.65	1.48
Triangle (equilateral)	3.30	2.95
Square	5.22	5.07

This work was supported in part by the National Science Foundation, the Army Research Office, the Air Force Office of Scientific Research and the Office of Naval Research.

REFERENCES

GEER, J. F. & STRIKWERDA, J. C. 1980 Vertical slender jets. J. Fluid Mech. 101, 53-63.

GEER, J. F. & STRIKWERDA, J. C. 1983 Vertical slender jets with surface tension. J. Fluid Mech. 135, 155-169.

KELLER, H. B. & KELLER, J. B. 1962 Exponential-like solutions of systems of linear ordinary differential equations. SIAM J. Appl. Maths 10, 246-259.

RAYLEIGH, LORD 1945 The Theory of Sound, 2nd edn. Dover.